A thermal lattice Boltzmann model for evaporating multiphase flows

Author:

Liang HongORCID,Liu WenyongORCID,Li YangORCID,Wei YikunORCID

Abstract

Modeling thermal multiphase flows has become a widely sought methodology due to its scientific relevance and broad industrial applications. Much progress has been achieved using different approaches, and the lattice Boltzmann method is one of the most popular methods for modeling liquid–vapor phase change. In this paper, we present a novel thermal lattice Boltzmann model for accurately simulating liquid–vapor phase change. The proposed model is built based on the equivalent variant of the temperature governing equation derived from the entropy balance law, in which the heat capacitance is absorbed into transient and convective terms. Then a modified equilibrium distribution function and a proper source term are elaborately designed in order to recover the targeting equation in the incompressible limit. The most striking feature of the present model is that the calculations of the Laplacian term of temperature, the gradient term of temperature, and the gradient term of density can be simultaneously avoided, which makes the formulation of the present model is more concise in contrast to all existing lattice Boltzmann models. Several benchmark examples, including droplet evaporation in open space, droplet evaporation on a heated wall, and nucleate boiling phenomenon, are carried out to assess numerical performance of the present model. It is found that the present model effectively improves the numerical accuracy in solving the interfacial behavior of liquid–vapor phase change within the lattice Boltzmann method framework.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3