Tailoring magnetic and dielectric properties of Yb2Ti2O7 pyrochlore through structural distortion

Author:

Yan Ming-Yuan1,Shu Li-Huai2,Xing Yu3,Chen Li-Da1,Zhang Xiao-Yu1,Zhang Shan-Tao1ORCID

Affiliation:

1. National Laboratory of Solid State Microstructures, College of Engineering and Applied Science & Jiangsu Key Laboratory of Artificial Functional Materials & Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China

2. National Laboratory of Solid State Microstructures and Physics School, Nanjing University, Nanjing 210093, China

3. School of Physics, Southeast University, Nanjing 211189, China

Abstract

While the unique geometrical frustration of pyrochlore Yb2Ti2O7 has attracted attention, the dielectric and other properties of this pyrochlore beyond frustrated magnetism are not well understood. Here, we report on the fascinating low-temperature dielectric relaxation of Yb2- xBa xTi2O7- δ ( x =  0–0.20) and demonstrate that this phenomenon is related to structural distortion. A-site Ba substitution, which increases the density of point defects and introduces a different atomic radius, enhances the chemical disorder and structural distortion. As a result, the increases in oxygen vacancies and nonmagnetic Ba2+ and Yb2+ ions dilute the ferromagnetic Yb3+–Yb3+ interactions, as indicated by the decrease in effective magnetic moment. On the other hand, the distorted octahedra facilitate the hopping of Yb ions, and the random distribution of Ba2+ ions at the Yb3+ sites gives rise to additional random fields, leading to significantly increased dielectric relaxation. The room-temperature dielectric constant is improved to ∼170, twice that of pristine Yb2Ti2O7. This work provides a comprehensive view of the structural, magnetic, and dielectric properties of Yb2Ti2O7 and lays the foundation for additional research into pyrochlore compounds.

Funder

National Key Research and Development Program of China

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3