Strategies for accessing photosensitizers with extreme redox potentials

Author:

Kim Dooyoung1ORCID,Teets Thomas S.1ORCID

Affiliation:

1. Department of Chemistry, University of Houston , 3585 Cullen Boulevard Room 112, Houston, Texas 77204-5003, USA

Abstract

Photoredox catalysis has been prominent in many applications, including solar fuels, organic synthesis, and polymer chemistry. Photocatalytic activity directly depends on the photophysical and electrochemical properties of photocatalysts in both the ground state and excited state. Controlling those properties, therefore, is imperative to achieve the desired photocatalytic activity. Redox potential is one important factor that impacts both the thermodynamic and kinetic aspects of key elementary steps in photoredox catalysis. In many challenging reactions in organic synthesis, high redox potentials of the substrates hamper the reaction, leading to slow conversion. Thus, the development of photocatalysts with extreme redox potentials, accompanied by potent reducing or oxidizing power, is required to execute high-yielding thermodynamically demanding reactions. In this review, we will introduce strategies for accessing extreme redox potentials in photocatalytic transformations. These include molecular design strategies for preparing photosensitizers that are exceptionally strong ground-state or excited-state reductants or oxidants, highlighting both organic and metal-based photosensitizers. We also outline methodological approaches for accessing extreme redox potentials, using two-photon activation, or combined electrochemical/photochemical strategies to generate potent redox reagents from precursors that have milder potentials.

Funder

Division of Chemistry

Welch Foundation

University of Houston

Publisher

AIP Publishing

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3