Inverse Faraday effect of weakly relativistic full Poincaré beams in plasma

Author:

Liu Wei1ORCID,Jia Qing1ORCID,Zheng Jian12ORCID

Affiliation:

1. Department of Plasma Physics and Fusion Engineering, University of Science and Technology of China 1 , Hefei, Anhui 230026, People’s Republic of China

2. Collaborative Innovation Center of IFSA, Shanghai Jiao Tong University 2 , Shanghai 200240, People’s Republic of China

Abstract

The inverse Faraday effect (IFE), which usually refers to the phenomenon in which a quasi-static axial magnetic field is self-generated when a circularly polarized beam propagates in a plasma, has rarely been studied for lasers with unconventional polarization states. In this paper, IFE is reconsidered for weakly relativistic full Poincaré beams, which can contain all possible laser polarization states. Starting from cold electron fluid equations and the conservation of generalized vorticity, a self-consistent theoretical model combining the nonlinear azimuthal current and diamagnetic current is presented. The theoretical results show that when such a laser propagates in a plasma, an azimuthally varying quasi-static axial magnetic field can be generated, which is quite different from the circularly polarized case. These results are qualitatively and quantitatively verified by three-dimensional particle-in-cell simulations. Our work extends the theoretical understanding of the IFE and provides a new degree of freedom in the design of magnetized plasma devices.

Funder

National Natural Science Foundation of China

Strategic Priority Research Program of Chinese Academy of Sciences

Publisher

AIP Publishing

Subject

Electrical and Electronic Engineering,Nuclear Energy and Engineering,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3