Automatic driving image matching via Random Sample Consensus (RANSAC) and Spectral Clustering (SC) with monocular camera

Author:

You Hairong1ORCID,Xie Yang2ORCID

Affiliation:

1. Ministry of Information Technology, China Minsheng Bank 1 , No. 2 Fuxingmen Inner Street, Xicheng District, 100032 Beijing, China

2. Mobile Department, Xiaomi Technology Co., Ltd. 2 , No. 33 Xierqi Middle Road, Haidian District, 100085 Beijing, China

Abstract

In today’s big data era, with the development of the Internet of Things (IoT) technology and the trend of autonomous driving prevailing, visual information has shown a blowout increase, but most image matching algorithms have problems such as low accuracy and low inlier rates, resulting in insufficient information. In order to solve the problem of low image matching accuracy and low inlier rate in the field of autonomous driving, this research innovatively applies spectral clustering (SC) in the field of data analysis to image matching in the field of autonomous driving, and a new image matching algorithm “SC-RANSAC” based on SC and Random Sample Consensus (RANSAC) is proposed. The datasets in this research are collected based on the monocular cameras of autonomous driving cars. We use RANSAC to obtain the initial inlier set and the SC algorithm to filter RANSAC’s outliers and then use the filtered inliers as the final inlier set. In order to verify the effectiveness of the algorithm, it shows the matching effect from three angles: camera translation, rotation, and rotation and translation. SC-RANSAC is also compared with RANSAC, graph-cut RANSAC, and marginalizing sample consensus by using two different types of datasets. Finally, we select three representative pictures to test the robustness of the SC-RANSAC algorithm. The experimental results show that SC-RANSAC can effectively and reliably eliminate mismatches in the initial matching results; has a high inlier rate, real-time performance, and robustness; and can be effectively applied in the environment of autonomous driving.

Publisher

AIP Publishing

Reference37 articles.

1. Deep reinforcement learning for autonomous driving: A survey;IEEE Trans. Intell. Transp. Syst.,2022

2. Toward more safety on the roads: Development of a lane keep assistance system for public transport

3. Image-based trajectory tracking and distance estimation of a follower robot from a leader one;AIP Conf. Proc.,2023

4. Visual perception enabled industry intelligence: State of the art, challenges and prospects;IEEE Trans. Ind. Inf.,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3