Affiliation:
1. Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Education University, Guiyang 550018, China
Abstract
Atomically thin MoS2 has emerged to be promising for photocatalytic water splitting benefiting from its suitable geometrical and electronic structure for light harvesting. A better understanding of how water molecules affect the band edge levels of MoS2 is critical for promoting the interfacial reactivity. Here, we determine the structures of water monolayers on MoS2 using global optimizations achieved by molecular dynamics in combination with local minimization. It is shown that cyclic water clusters are formed on a surface through a hydrogen-bonding network. The absolute band edge positions are explored taking into account the derivative discontinuity of the exchange–correlation functional. Shifts in band edges are observed with the increase in H2O coverage, while bandgaps tend to be slightly decreased. In particular, the band alignment relative to water redox potentials has been investigated in detail. We find that the dimer configuration is likely to suppress the hydrogen evolution reaction (HER), while the polygon clusters lift the conduction band by 0.2–0.7 eV, and thus, they would enhance HER. This effect is explained in terms of the linear dependence of the band edge offset on an interface electric dipole arising from water assemblies.
Funder
National Natural Science Foundation of China
Subject
Physical and Theoretical Chemistry,General Physics and Astronomy
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献