Scattering of energetic electrons through nonlinear cyclotron resonance with coherent whistler-mode hiss emissions

Author:

Tobita Miwa1ORCID,Omura Yoshiharu2ORCID

Affiliation:

1. Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan

2. Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto 611-0011, Japan

Abstract

Recent observations have revealed that plasmaspheric hiss consists of many discrete waves called “hiss elements.” However, the interaction of energetic electrons (10 keV to several MeV) with the plasmaspheric hiss has only been simulated by the quasilinear (QL) diffusion theory, which does not take the fine wave structure into account. The QL theory cannot address nonlinear particle motions determined by the inhomogeneity factor, which influences the scattering of electrons in pitch angle and energy. This study aims to identify differences between the nonlinear wave–particle interaction and QL theory for plasmaspheric hiss emissions. We conduct test particle simulations to demonstrate the nonlinear interactions between hiss waves and electrons. The nonlinear theory is used to model hiss elements consisting of discrete frequencies and continuous phases. Unlike the other theories, the frequency and amplitude variations in time of the hiss packet are taken into account. Frequencies of the packets are determined to satisfy the separability criterion; when the criterion is met, resonance overlapping is absent, and the electrons can generate each wave element independently. The realistic simulation model of hiss waves reproduces the scattering of electrons by both first- and second-order resonances. We also evaluate the efficiency of electron scattering by calculating nonlinear diffusion coefficients. The diffusion coefficient of equatorial pitch angle is of the same order of magnitude as those calculated by the QL diffusion theory, while we find the effective acceleration of resonant electrons by successive nonlinear trapping, which is not evaluated by the QL theory.

Funder

Japan Society for the Promotion of Science

Publisher

AIP Publishing

Subject

Condensed Matter Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3