Affiliation:
1. School of Physics, Hunan Key Laboratory of Super Microstructure and Ultrafast Process, Hunan Key Laboratory of Nanophotonics and Devices, State Key Laboratory of Powder Metallurgy, Central South University , Changsha 410083, China
Abstract
Solid-state refrigeration technology has been attracting tremendous attention in recent decades. Plastic crystal pentaerythritol (PE) is a crucial barocaloric material in the solid-state refrigeration field due to its high entropy. However, its refrigeration temperature range and extremely low thermal conductivity are far from meeting the requirements of practical application. Here, we systematically investigate the barocaloric effect (BCE) of composite PE and silicon frame [consisting of silicon nanotube and silicene architectures (SNT-Sil)] and analyze the effects of different silicon models on the BCE performance based on molecular dynamics simulations and statistical analysis. A colossal BCE of PE/silicon frame composite is observed, and refrigeration temperature can be altered to the room temperature range by alloying neopentane (PA) into the PE matrix. It is found that the composite PE0.8PA0.2/SNT-Sil and PE0.9PA0.1/SNT-Sil demonstrate excellent comprehensive refrigeration performance near room temperature (300–320 K), with large isothermal entropy change ΔS (654–842 J kg−1 K−1), adiabatic temperature ΔT (34–47 K), and thermal conductivity κ (4.0–4.2 W m−1 K−1). The microscopic mechanism is discussed through pressure induced changes in bonding, structural, and vibrational properties. Importantly, the plastic crystal/silicon framework is easy to deform and requires smaller input work in the barocaloric refrigeration process compared to other nanomaterials such as carbon framework. This work provides important guidance on improving plastic crystals with colossal comprehensive refrigeration performance for practical applications.
Funder
National Natural Science Foundation of China
Hunan Provincial key research and development program
High-level Talents Program, Distinguished Youth Foundation of Hunan Province
Project of High-Level Talents Accumulation of Hunan Province
Program of Hundreds of Talents of Hunan Province, State Key Laboratory of Powder Metallurgy, start-up funding and Innovation-Driven Plan
Scientific Postgraduate Scientific Research Innovation Project of Hunan Province
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献