Investigation on corner stall prediction and flow control by blended blade and end wall technology in a compressor cascade based on modified Spalart–Allmaras model

Author:

Zhu Huiling1ORCID,Zhou Ling1ORCID,Fu Hao1ORCID,Sun Shuxian1ORCID,Ji Lucheng2ORCID,Lin Boxi3ORCID

Affiliation:

1. School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China

2. Institute for Aero Engine, Tsinghua University, Beijing 100084, China

3. China Academy of Aerospace Aerodynamics, Beijing 100074, China

Abstract

Corner stall has a significant impact on the performance of compressor cascades, but it is difficult to predict precisely using conventional Reynolds-averaged Navier–Stokes models. In view of this, first, the Spalart–Allmaras (SA) turbulence model modified with helicity is recalibrated to predict corner stall accurately. The internal reasons why the modified SA model does not overestimate the extent and intensity of corner stall as the original SA model is further explored through the analysis of turbulence transport nature. The investigation of corner stall control in a modified National Advisory Committee for Aeronautics 65 cascade by the blended blade and end wall (BBEW) technology is then carried out using the recalibrated MSA model. The numerical results indicate that the BBEW technology can eliminate the separation vortex on the end wall and change the flow field from corner stall to corner separation. The best BBEW scheme reduces the total pressure loss coefficient by 14.13%. The BBEW technology can most significantly enhance the aerodynamic performance of the compressor cascade when the maximum BBEW thickness is close to the trailing edge. When the maximum BBEW thickness is in the same position, the control effect rises first and subsequently falls as the maximum BBEW thickness grows. These research results serve as a guide for choosing turbulence models and designing the BBEW schemes.

Funder

National Natural Science Foundation of China

National Major Science and Technology Projects of China

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3