Quantum chemical calculations of electron affinities of alkaline earth metal atoms (Ca, Sr, Ba, and Ra)

Author:

Park Eunji1ORCID,Park Jeongmin1,Kim Ingyeong1,Kim Jungyoon1,Seo Wonil1,Yadav Rajesh K.2,Kim Joonghan1ORCID

Affiliation:

1. Department of Chemistry, The Catholic University of Korea 1 , Bucheon 14662, Republic of Korea

2. Department of Chemistry and Environmental Science, Madan Mohan Malaviya University of Technology 2 , Gorakhpur 273010, U.P., India

Abstract

We performed high-level ab initio quantum chemical calculations, incorporating higher-order excitations, spin–orbit coupling (SOC), and the Gaunt interaction, to calculate the electron affinities (EAs) of alkaline earth (AE) metal atoms (Ca, Sr, Ba, and Ra), which are notably small. The coupled-cluster singles and doubles with perturbative triples [CCSD(T)] method is insufficient to accurately calculate the EAs of AE metal atoms. Higher-order excitations proved crucial, with the coupled-cluster singles, doubles, and triples with perturbative quadruples [CCSDT(2)Q] method effectively capturing dynamic electron correlation effects. The contributions of SOC (ΔESOs) to the EAs calculated using the multireference configuration interaction method with the Davidson correction, including SOC, positively enhance the EAs; however, these contributions are overestimated. The Dirac–Hartree–Fock (DHF)-CCSD(T) method addresses this overestimation and provides reasonable values for ΔESO (ΔESO−D). Employing additional sets of diffuse and core–valence correlation basis sets is critical for accurately calculating the EAs of AE metal atoms. The contributions of the Gaunt interaction (ΔEGaunt) to the EAs of AE metal atoms are negligible. Notably, the CCSDT(2)Q with the complete basis set limit + ΔESO−D + ΔEGaunt produced EA values for Ca, Sr, and Ba that closely aligned with experimental data and achieved accuracy exceeding the chemical accuracy. Based on our findings, the accurately proposed EA for Ra is 9.88 kJ/mol.

Funder

Ministry of Trade, Industry and Energy

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3