Exceptional thermal conductivity increase of Nafion by hydrogen-bonded water molecules

Author:

Rahbar Mahya1ORCID,Alahmad Qusai1ORCID,Bai John1,Zhang Lijun2ORCID,Wang Xinwei1ORCID

Affiliation:

1. Department of Mechanical Engineering, Iowa State University 1 , Ames, Iowa 50011, USA

2. College of Engineering Science and Technology, Shanghai Ocean University 2 , 999 Huchenghuan Road, Shanghai 201306, People's Republic of China

Abstract

Nafion, a widely used proton exchange membrane in fuel cells, is a representative perfluorosulfonic acid membrane consisting of a hydrophobic Teflon backbone and hydrophilic sulfonic acid side chains. Its thermal conductivity (k) is critical to fuel cell's thermal management. During fuel cell operation, water molecules inevitably enter Nafion and could strongly affect its k. In this work, we measure the k of Nafion of different water content (λ). Findings reveal that k is significantly low in a vacuum environment characterized as 0.110 W m−1 K−1, but at λ ∼1, a notable increase is observed, reaching 0.162 W m−1 K−1. Moreover, k at λ ≈ 6 is 60% higher than that of λ ∼1. This exceptional k increase is far beyond the theoretical prediction by the effective medium theory that only considers simply physical mixing. Rather this k increase is attributed to the formation of water clusters and channels with increased λ, creating thermal pathways through hydrogen bonding, thereby improving chemical connections within the Nafion structure and augmenting its k. Furthermore, it is observed that Nafion's k reaches the maximum value of 0.256 W m−1 K−1 at λ ≈ 6, with no further increase up to λ ≈ 10.5. This phenomenon is explained by the coalescence of water clusters at λ ≈ 6, forming channels that optimize heat transfer pathways and connections within the Nafion structure. Moreover, the free movement of water molecules within water channels (λ > 6) shows physical alterations in Nafion structure (significant volume increase), which have a lesser impact on k.

Funder

National Science Foundation

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3