Affiliation:
1. Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan 430072, People's Republic of China
2. Suzhou Institute of Wuhan University, Suzhou 255123, People's Republic of China
Abstract
Antimony sulfide (Sb2S3) as a binary chalcogenide has emerged as a promising candidate for next-generation thin-film photovoltaics. Although breakthroughs have been made in terms of device performance in recent years, the power conversion efficiency is still far from the Shockley–Queisser limit. It is mainly attributed to the poor charge transport and abundant defects, which deteriorate the fill factor and result in grievous open-circuit voltage loss. Here, we improved the device performance through a synergetic approach: (i) by introducing ZnSnO3 as the second electron transport layer, the current leakage was effectively reduced, and the charge extraction was enhanced; then, (ii) the prepared Sb2S3 films were treated via a low-temperature and short-time post-treatment with thiourea, which significantly suppressed the carrier recombination and increased the open-circuit voltage. More importantly, we systematically analyzed the trap features of the Sb2S3 films with/without treatment, mainly including the trap density, trap level, and trap capture cross section. We found that defects near the surface due to elemental inhomogeneity by the hydrothermal method could be effectively passivated, and defect-assisted recombination was suppressed after the thiourea treatment.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Jiangsu Province
National Key R&D Program of China
Subject
Physics and Astronomy (miscellaneous)
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献