Dynamic density functional theory for sedimentation processes on complex domains: Modelling, spectral elements, and control problems

Author:

Roden Jonna C.1ORCID,Goddard Benjamin D.1ORCID,Pearson John W.1ORCID

Affiliation:

1. School of Mathematics and Maxwell Institute for Mathematical Sciences, The University of Edinburgh , Edinburgh EH9 3FD, United Kingdom

Abstract

Modelling of many real-world processes, such as drug delivery, wastewater treatment, and pharmaceutical production, requires accurate descriptions of the dynamics of hard particles confined in complicated domains. In particular, when modelling sedimentation processes or systems with driven flows, it is important to accurately capture volume exclusion effects. This work applies Dynamic Density Functional Theory to the evolution of a particle density under diffusion, external forces, particle–particle interaction, and volume exclusion. Using a spectral element framework, for the first time it is possible to include all of these effects in dynamic simulations on complex domains. Moreover, this allows one to apply complicated no-flux, and other non-local, non-linear, boundary conditions. The methodology is also extended to control problems, addressing questions of how to enhance production set-up in industrially-motivated processes. In this work the relevant models are introduced, numerical methods are discussed, and several example problems are solved to demonstrate the methods’ versatility. It is shown that incorporating volume exclusion is crucial for simulation accuracy and we illustrate that the choice of boundary conditions significantly impacts the dynamics.

Funder

Engineering and Physical Sciences Research Council

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3