Lagrangian dynamics of particle transport in oral and nasal breathing

Author:

Seyedzadeh Hossein1ORCID,Oaks Wayne1ORCID,Craig Jonathan1ORCID,Aksen Mustafa1ORCID,Sanz Mario Sánchez2ORCID,Khosronejad Ali1ORCID

Affiliation:

1. Civil Engineering Department, Stony Brook University 1 , Stony Brook, New York 11794, USA

2. Department of Thermal and Fluids Engineering, Carlos III University of Madrid 2 , Madrid 28911, Spain

Abstract

We present a large-eddy simulation (LES) of saliva particle transport during normal human breathing through the nose and mouth. The flow of the air–saliva mixture is modeled using an Eulerian LES that is coupled with a Lagrangian particle tracking module to obtain trajectories of saliva particles in a room with stagnant air conditions. The coupled Eulerian–Lagrangian simulation yields novel insights into the intricate dynamics of Lagrangian coherent structures (LCS) and fundamental material lines that emerge from the saliva particles' trajectories during several breathing cycles. Further, we systematically compare the quantitative LCS diagnostics of mouth breathing with those of mouth and nose normal breathing. Analyzing the simulation results of human breathing from the mouth and nose, we show that, soon after the first breathing cycle, saliva particles form a series of roll-up vortex rings that propagate forward. The forward propagation of these vortex rings leads to the formation of an asymmetrical primary forefront vortex. The individual vortex rings continuously propagate forward, merging with the forefront vortex, and ascending along the limb of the leading vortex.

Funder

National Science Foundation

Water Power Technologies Office

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3