The influence of shape and matrix size on the mechanical properties of the 2D epoxy thin film by Monte Carlo simulation method

Author:

Trong Dung Nguyen12ORCID,Long Van Cao1ORCID,Ţălu Ştefan3ORCID

Affiliation:

1. Institute of Physics, University of Zielona Góra 1 , Prof. Szafrana 4a, 65-516 Zielona Góra, Poland

2. Hanoi National University of Education, Faculty of Physics 2 , 136 Xuan Thuy, Cau Giay, Hanoi 100000, Vietnam

3. Technical University of Cluj-Napoca, The Directorate of Research, Development and Innovation Management (DMCDI) 3 , 15 Constantin Daicoviciu St., Cluj-Napoca 400020, Cluj County, Romania

Abstract

In this paper, we studied the effect of the 2D epoxy thin films’ shape with equilateral triangle and square structures, and matrix size Lx × Ly of (10 × 9), (20 × 19), (30 × 29), and (40 × 39) with equilateral triangle structure and (10 × 10), (20 × 20), (30 × 30), and (40 × 40) with the square structure on their mechanical properties [such as strain (ɛ), stress (σ), Young stress (E), and shear strain (G)] by using the Monte Carlo simulation method. The results show that when the shape of the 2D epoxy thin film is changed from an equilateral triangle structure to a square structure, the values of σ, E, and G decreased sharply. In addition, when the matrix size is increased from (10 × 9) to (20 × 19), (30 × 29), and (40 × 39) with an equilateral triangle structure and from (10 × 10) to (20 × 20), (30 × 30), and (40 × 40) with a square structure, σ slightly increased, but E and G decreased slightly. These results prove that the influence of structure shape on the mechanical properties of the 2D epoxy thin film is very large. The strain stress on the epoxy 2D thin film with an equilateral triangle structure and with a matrix size of (30 × 29) has a value of σ = 63.3 MPa. This result is consistent with the experimental result that σ of bulk epoxy has the maximum value of σmax = 64.76 MPa. The results are the basis for experimental research in future studies on practical applications of epoxy-thin films. In these cases, when thin films with equilateral triangle structures are used in biomedical fields, high stresses are required (such as replacement material for adaxial onion epidermis and fibrin and collagen with low stress).

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3