Affiliation:
1. Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
Abstract
The observation of the Hanbury Brown and Twiss (HBT) effect with thermal light marked the birth of quantum optics. All the thermal sources considered to date did not feature quantum signatures of light, as they consisted of independent emitters that emit uncorrelated photons. Here, we propose and demonstrate an incoherent light source based on phase-randomized spatially entangled photons, which we coin thermal biphotons. We show that in contrast to thermal light, the width of the HBT peak for thermal biphotons is determined by their correlations, leading to violation of the Siegert relation and breakdown of the speckle-fluctuations interpretation. We further provide an alternative interpretation of the results by drawing a connection between the HBT effect and coherent backscattering of light. Finally, we discuss the role of spatial entanglement in the observed results, deriving a relation between the Schmidt number and the degree of violation of the Siegert relation under the double-Gaussian approximation of spontaneous parametric down conversion. Our work reflects new insights on the coherence properties of thermal light in the presence of entanglement, paving the way for entanglement certification using disorder averaged measurements.
Funder
Zuckerman STEM Leadership Program
Israel Science Foundation
ISF-NRF Singapore Joint Research Program
United States-Israel Binational Science Foundation
Subject
Computer Networks and Communications,Atomic and Molecular Physics, and Optics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献