Substantial breakdown of the hydrogen-bonding network, local density inhomogeneities and fluid-liquid structural transitions in supercritical octanol-1: A molecular dynamics investigation

Author:

Skarmoutsos Ioannis1ORCID

Affiliation:

1. Laboratory of Physical Chemistry, Department of Chemistry, University of Ioannina , 45110 Ioannina, Greece

Abstract

Molecular dynamics simulations have been employed to explore the hydrogen-bonding structure and dynamics in supercritical octanol-1 at a near-critical temperature and up to high densities and pressures. A substantial breakdown of the hydrogen-bonding network when going from ambient-liquid to supercritical conditions is revealed. The fraction of the non-hydrogen bonded molecules significantly increases in supercritical octanol-1, and a substantial decrease in the intermittent hydrogen-bond lifetime is observed. This behavior is also reflected on the maximum local density augmentation, which is comparable to the values obtained for non-polar and non-hydrogen bonded fluids. The existence of a structural transition from an inhomogeneous fluid phase to a soft-liquid one at densities higher than 2.0 ρc is also revealed. At higher densities, a significant change in the reorientational relaxation process is observed, reflected on the significant increase in the ratio of the Legendre reorientational times τ1R/τ2R. The latter becomes much higher than the value predicted by the Debye model of diffusive reorientation and the corresponding ratio for ambient liquid octanol-1. The non-polar tail of octanol-1 under supercritical conditions reorients more slowly in comparison with the polar tail. Interestingly, the opposite behavior is observed for the ambient liquid, further verifying the strong effect of the breakdown of the hydrogen bonding network on the properties of supercritical octanol-1. In accordance with the above-mentioned findings, the static dielectric constant of supercritical octanol-1 is very low even at high densities and pressures, comparable to the values obtained for non-polar and non-hydrogen bonded fluids.

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3