Effects of flow conditions on the cavitation characteristics of viscous oil around a hydrofoil

Author:

Guo MengORCID,Liu ChengORCID,Ke ZhifangORCID,Yan QingdongORCID,Zuo Zhengxing,Khoo Boo Cheong1ORCID

Affiliation:

1. Department of Mechanical Engineering, National University of Singapore 4 , Singapore 119260

Abstract

Viscous oils, which are media commonly used for fluid power transmission, are characterized by high velocities, temperatures, and pressures when working in fluid components and mechanics. The transient nature of viscous oil makes it susceptible to complex operating conditions, which result in cavitation phenomena and can threaten the normal operation and safety of machinery and components. In this study, a three-dimensional computational fluid dynamics model that accounts for cavitation was developed to study the cavitation characteristics, formation conditions, and development of cavitating flow in viscous oil around a hydrofoil under various flow conditions. Moreover, a visual experimental system in which viscous oil flowed around the hydrofoil was proposed and developed to investigate the cavitation properties with regard to various flow conditions. Both numerical results and experimental data indicated that cavitation occurred on the suction surface of the hydrofoil head, and the cavitation characteristics in viscous oil are significantly influenced by the flow conditions. The maximum vapor volume change rate for the degree of effects on cavitation in viscous oil by flow conditions was calculated to be 1.78 cm3/(m/s), −130.66 cm3/MPa, 0.16 cm3/°C, and 4.52 cm3/°, respectively. Low velocities, high pressures, low temperatures, and small impact angles were proved to be able to suppress cavitation. This study provides a research method, an experimental mean, and data support for cavitation flow of viscous fluids, especially oil. It has significant engineering application significance for the development of fluid machinery.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Vehicular Transmission Key Laboratory Fund

China Scholarship Council

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3