Machine learning-based inverse design for single-phase high entropy alloys

Author:

Zeng Yingzhi1ORCID,Man Mengren1ORCID,Ng Chee Koon2ORCID,Wuu Delvin2ORCID,Lee Jing Jun2ORCID,Wei Fengxia2ORCID,Wang Pei23ORCID,Bai Kewu1ORCID,Cheh Tan Dennis Cheng2ORCID,Zhang Yong-Wei1ORCID

Affiliation:

1. Institute of High Performance Computing, Agency for Science, Technology and Research, Singapore, 1 Fusionopolis Way, No. 16-16 Connexis, Singapore 138632, Republic of Singapore

2. Institute of Materials Research and Engineering, Agency for Science Technology and Research, 2 Fusionopolis Way, No. 08-03 Innovis, Singapore 138634, Republic of Singapore

3. Engineering Cluster, Singapore Institute of Technology, Singapore 519961, Republic of Singapore

Abstract

In this work, we develop an inverse design framework to search for single-phase high entropy alloys (HEAs) subjected to specified phase targets and constraints. This framework is based on the fast grid search in the composition–temperature space, enabled by a highly accurate and efficient machine learning model trained by a huge amount of data. Using the framework, we search through the entire quaternary, quinary, and senary alloy systems, formed by Al, Co, Cr, Cu, Fe, Mn, Ni, and Ti, to identify three types of HEAs: (1) the single-phase FCC HEA with the highest Al content; (2) the single-phase FCC HEA with lower equilibrium temperatures; and (3) single-phase BCC HEAs with Al as the principal element. For the first time, we reveal that the highest Al content in single-phase FCC HEAs is 0.15 in mole fraction, which is higher than the Al contents in all reported single-phase FCC HEAs. The identified HEAs for the quaternary, quinary, and senary groups are Al0.15Co0.34Cr0.16Ni0.35, Al0.15Co0.35Cr0.1Fe0.05Ni0.35, and Al0.15Co0.36Cr0.06Fe0.06Mn0.01Ni0.36, respectively. All the designed HEAs are verified by the equilibrium calculations with Thermo-Calc software and the TCHEA3 database. We further conduct Scheil–Gulliver calculations and experimental fabrications and characterizations for the designed HEAs, to verify the formation of the targeted phases at non-equilibrium conditions. This work demonstrates a viable approach to design HEAs with specified phase targets and constraints.

Publisher

AIP Publishing

Subject

General Engineering,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3