Predicting the artificial dynamical acceleration of binary hydrocarbon mixtures upon coarse-graining with roughness volumes and simple averaging rules

Author:

Meinel Melissa K.1ORCID,Müller-Plathe Florian1ORCID

Affiliation:

1. Technische Universität Darmstadt, Eduard-Zintl-Institut für Anorganische und Physikalische Chemie and Profile Area Thermofluids and Interfaces, Technische Universität Darmstadt , Peter-Grünberg-Str. 8, D-64287 Darmstadt, Germany

Abstract

Coarse-grained (CG) molecular models greatly reduce the computational cost of simulations allowing for longer and larger simulations, but come with an artificially increased acceleration of the dynamics when compared to the parent atomistic (AA) simulation. This impedes their use for the quantitative study of dynamical properties. During coarse-graining, grouping several atoms into one CG bead not only reduces the number of degrees of freedom but also reduces the roughness on the molecular surfaces, leading to the acceleration of dynamics. The RoughMob approach [M. K. Meinel and F. Müller-Plathe, J. Phys. Chem. B 126(20), 3737–3747 (2022)] quantifies this change in geometry and correlates it to the acceleration by making use of four so-called roughness volumes. This method was developed using simple one-bead CG models of a set of hydrocarbon liquids. Potentials for pure components are derived by the structure-based iterative Boltzmann inversion. In this paper, we find that, for binary mixtures of simple hydrocarbons, it is sufficient to use simple averaging rules to calculate the roughness volumes in mixtures from the roughness volumes of pure components and add a correction term quadratic in the concentration without the need to perform any calculation on AA or CG trajectories of the mixtures themselves. The acceleration factors of binary diffusion coefficients and both self-diffusion coefficients show a large dependence on the overall acceleration of the system and can be predicted a priori without the need for any AA simulations within a percentage error margin, which is comparable to routine measurement accuracies. Only if a qualitatively accurate description of the concentration dependence of the binary diffusion coefficient is desired, very few additional simulations of the pure components and the equimolar mixture are required.

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3