Superior optical gain in zinc selenide colloidal nanocrystals induced by Coulomb-correlated electron–hole plasma

Author:

Huang Zhigao1ORCID,Shen Hanchen1ORCID,Wu Yiming2,Wu Yuting1ORCID,Xu Weigao3ORCID,Zhang Xie4ORCID,Wang Yue1ORCID

Affiliation:

1. College of Materials Science and Engineering, Nanjing University of Science and Technology 1 , Nanjing 210094, China

2. Institute of Flexible Electronics (Future Technologies), Xiamen University 2 , Xiamen 361005, China

3. Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University 3 , Nanjing, China

4. School of Materials Science and Engineering, Northwestern Polytechnical University 4 , Xi'an 710072, China

Abstract

Colloidal semiconductor nanocrystals (NCs) have been recognized as promising solution-processable gain media; however, the lasers with state-of-the-art performance exclusively originate from the cadmium- and lead-based NCs. Herein, we for the first time unravel that high-quality heavy-metal-free ZnSe/ZnS NCs show superior optical gain and lasing performance when the sizes exceed the quantum confinement regime. Corroborated by comprehensive transient spectroscopy, we reveal that the optical gain in large ZnSe/ZnS NCs originates from the novel Coulomb-correlated electron–hole plasma (C-EHP) instead of high-order multi-exciton recombination. Thanks to the formation of a four-level system and the suppression of Auger recombination, the C-EHP renders low gain threshold (9.4 μJ/cm2), high gain coefficient (>6500 cm−1), and long gain lifetime (∼4 ns). Such desirable gain properties compete well with those of classic CdSe NCs and enable the construction of a high-performance laser device. This work represents significant progress toward the development of solution-processable non-heavy-metal nanocrystal lasers.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3