Abstract
Boiling of the coolant at the hot surface provides relatively better cooling by absorbing latent heat along with convection heat transfer as compared to heat transfer under single-phase conditions. In boiling, the orientation of heated surface also plays a crucial role. Downward facing boiling is complex than upward facing boiling, as the detachment of the bubble inhibited due to the heater surface orientation. Consequently, the bubble residence time and interaction with other bubbles are different in such boiling conditions. Our experiments on a large downward facing flat surface (100 × 400 mm2) revealed unexplored boiling phenomena. The boiling process is dominated by a complex engulfing phenomenon, which is rarely reported in the past. The engulfing phenomena have been captured using high-speed photography, wherein, at low heat fluxes, it is observed that larger bubbles engulf small bubbles by opening their mouth and swallowing the small bubbles. However, at higher heat fluxes, this phenomenon disappears. A larger vapor blanket is formed due to engulfing of bubbles, which may lead to departure from nucleate boiling. This engulfing behavior depends on the heat flux and subcooling. With the increase in heat flux, it is found that the rate of vapor engulfing increases. We have attempted to explain the science behind such engulfing phenomenon based on the capillary pressure difference. These results are consistent at various subcooling. This research provides new insights into nucleate boiling and may help in developing advanced mathematical models for accurate heat transfer prediction on downward facing nucleate boiling.