Beyond isotropic repulsion: Classical anisotropic repulsion by inclusion of p orbitals

Author:

Chung Moses K. J.12ORCID,Ponder Jay W.34ORCID

Affiliation:

1. Medical Scientist Training Program, Washington University School of Medicine 1 , Saint Louis, Missouri 63110, USA

2. Department of Physics, Washington University in St. Louis 2 , Saint Louis, Missouri 63130, USA

3. Department of Chemistry, Washington University in St. Louis 3 , Saint Louis, Missouri 63130, USA

4. Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine 4 , Saint Louis, Missouri 63110, USA

Abstract

Accurate modeling of intermolecular repulsion is an integral component in force field development. Although repulsion can be explicitly calculated by applying the Pauli exclusion principle, this approach is computationally viable only for systems of limited sizes. Instead, it has previously been shown that repulsion can be reformulated in a “classical” picture: the Pauli exclusion principle prohibits electrons from occupying the same state, leading to a depletion of electronic charge between atoms, giving rise to an enhanced nuclear–nuclear electrostatic repulsion. This classical picture is called the isotropic S2/R approximation, where S is the overlap and R is the interatomic distance. This approximation accurately captures the repulsion of isotropic atoms such as noble gas dimers; however, a key deficiency is that it fails to capture the angular dependence of the repulsion of anisotropic molecules. To include directionality, the wave function must at least be a linear combination of s and p orbitals. We derive a new anisotropic S2/R repulsion model through the inclusion of the anisotropic p orbital term in the total wave function. Because repulsion is pairwise and decays rapidly, it can be truncated at a short range, making it amenable for efficient calculation of energy and forces in complex biomolecular systems. We present a parameterization of the S101 dimer database against the ab initio benchmark symmetry-adapted perturbation theory, which yields an rms error of only 0.9 kcal/mol. The importance of the anisotropic term is demonstrated through angular scans of water–water dimers and dimers involving halobenzene. Simulation of liquid water shows that the model can be computed efficiently for realistic system sizes.

Funder

National Institutes of Health

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3