Three-dimensional magnetohydrodynamic modeling of auto-magnetizing liner implosions on the Z accelerator

Author:

Shipley G. A.1ORCID,Awe T. J.1ORCID

Affiliation:

1. Sandia National Laboratories , Albuquerque, New Mexico 87185, USA

Abstract

Auto-magnetizing (AutoMag) liners are cylindrical tubes that employ helical current flow to produce strong internal axial magnetic fields prior to radial implosion on ∼100 ns timescales. AutoMag liners have demonstrated strong uncompressed axial magnetic field production (>100 T) and remarkable implosion uniformity during experiments on the 20 MA Z accelerator. However, both axial field production and implosion morphology require further optimization to support the use of AutoMag targets in magnetized liner inertial fusion (MagLIF) experiments. Data from experiments studying the initiation and evolution of dielectric flashover in AutoMag targets on the Mykonos accelerator have enabled the advancement of magnetohydrodynamic (MHD) modeling protocols used to simulate AutoMag liner implosions. Implementing these protocols using ALEGRA has improved the comparison of simulations to radiographic data. Specifically, both the liner in-flight aspect ratio and the observed width of the encapsulant-filled helical gaps during implosion in ALEGRA simulations agree more closely with radiography data compared to previous GORGON simulations. Although simulations fail to precisely reproduce the measured internal axial magnetic field production, improved agreement with radiography data inspired the evaluation of potential design improvements with newly developed modeling protocols. Three-dimensional MHD simulation studies focused on improving AutoMag target designs, specifically seeking to optimize the axial magnetic field production and enhance the cylindrical implosion uniformity for MagLIF. By eliminating the driver current prepulse and reducing the initial inter-helix gap widths in AutoMag liners, simulations indicate that the optimal 30–50 T range of precompressed axial magnetic field for MagLIF on Z can be accomplished concurrently with improved cylindrical implosion uniformity.

Funder

Sandia National Laboratories

Krell Institute

Publisher

AIP Publishing

Subject

Condensed Matter Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3