Design of a point-focusing lens antenna based on 3D printing for a small-area plasma

Author:

Yue Dong1ORCID,Guo Lixin1ORCID,Li Jiangting1ORCID,Guo Linjing1ORCID

Affiliation:

1. School of Physics, Xidian University , Xi’an 710071, China

Abstract

The interaction mechanism between plasmas and electromagnetic waves has not been fully defined, and experiments are helpful for investigating the mechanism and verifying the theoretical analysis. This paper proposes a point-focusing lens antenna based on three-dimensional (3D) printing technology for the experimental study of the interaction between electromagnetic waves and a small-area plasma. First, CST simulation software was used for the simulation design of the horn antenna and focusing lens. Subsequently, 3D printing technology was used to print the lens combined with the horn antenna for experimental verification of the focusing performance. Finally, an electromagnetic wave passing through a plasma was experimentally investigated, and it was mutually verified with the propagation theory of electromagnetic waves in plasmas. The experimental and theoretical data indicated that the 3D-printed point-focusing lens antenna exhibited a good focusing effect on electromagnetic waves. This method may be used by employing a variety of materials and designs, thereby considerably improving the detection of small-area plasma. It may also solve the issue of the radial diffraction effect of narrow cylindrical plasma generated by inductively coupled plasma-generation equipment and reduce the error associated with experimental data. Therefore, this method may be useful for plasma propagation measurement, plasma-environment diffraction analysis, and parameter inversion of complex plasma environments.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Foundation for Innovative Research Groups of the National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3