Plasmonic diastereoisomer arrays with reversed circular dichroism simply controlled by deformation height

Author:

Chen Shanshan1,Ji Chang-Yin1,Han Yu12,Liu Xing1,Wang Yongtian2ORCID,Liu Juan2ORCID,Li Jiafang13ORCID

Affiliation:

1. Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing 100081, China

2. Beijing Engineering Research Center for Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China

3. Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314019, China

Abstract

Chirality reversal between enantiomers is of great importance in both fundamental science and practical applications in chiroptics, biomedicine, and analytical chemistry. Here, we demonstrate an abrupt sign reversal of circular dichroism (CD) between artificial plasmonic diastereoisomers, which are a kind of stereo twisted metamolecules with different strength of deformations. The sign of the CD response is reversed in the same wavelength region by simply engineering the deformation height of nanostructures. Electromagnetic multipolar analysis shows that the sign of CD is determined by the phase-controlled handedness-dependent excitations of electric quadrupole modes. The numerical simulations are further verified by experiments using a nano-kirigami fabrication method. This work reveals that under certain circumstances, the CD response of the plasmonic diastereoisomers can be very close to that of enantiomers, which is useful for the exploration of profound chiroptics, as well as for the applications in chirality switching, chiral biosensing, and chiral separation.

Funder

National Natural Science Foundation of China

Science and Technology Project of Guangdong

Natural Science Foundation of Beijing Municipality

Beijing Municipal Science & Technology Commission, Administrative Commission of Zhonguancun Science Park

Publisher

AIP Publishing

Subject

Computer Networks and Communications,Atomic and Molecular Physics, and Optics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3