Non-dimensional analysis of an unsteady flow in a magnetorheological damper

Author:

Shou Mengjie1ORCID,Xie Lei2,Li Rui1,Liao Changrong2ORCID

Affiliation:

1. School of Automation, Chongqing University of Posts and Telecommunications, Chongqing 400065, China

2. Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China

Abstract

Theoretical modeling is often applied to study magnetorheological dampers (MRDs) with dimensional and non-dimensional analyses. In contrast to dimensional models, non-dimensional analyses can eliminate the influence of dimensionality and reduce the number of redundant parameters to simplify theoretical modeling and provide more universal applicability. However, most previous non-dimensional analyses have been based on quasi-steady flows that cannot reflect the transient response of an MRD because of the key assumption that the fluid velocity changes instantaneously. This study presents an investigation of the transient response of an MRD using a non-dimensional analysis approach based on an unsteady model. We focus on the step response of the MRD with a step excitation of the piston speed, while the magnetic field is kept constant. For a comprehensive analysis, a set of dimensionless parameters are defined, including a non-dimensional coordinate, a non-dimensional time parameter, the Bingham number, a non-dimensional pre-yield thickness, a damping coefficient, and a hydraulic amplification ratio. The relationships between these dimensionless numbers are analyzed. An unusual “concave area” is found in the velocity profile instead of a simple rigid flow during the transient process under a magnetic field. However, when the non-dimensional time is 0.4, the delayed concave area disappears, and the rigid area fluid velocity reaches 98% of its stable value.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Chongqing

Science and Technology Research Program of Chongqing Municipal Education Commission

China Postdoctoral Science Foundation

Cooperation Project Between Undergraduate Universities in Chongqing and Institutions Affiliated to the Chinese Academy of Sciences

Innovation Research Group of Universities in Chongqing

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3