Affiliation:
1. Hefei National Laboratory of Physical Science at the Microscale, School of Chemistry and Materials Science, Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Anhui 230026, China
Abstract
Hydrogen production from water via photocatalytic water splitting has attracted great interest due to the increasing challenge from energy and environment. The light harvest, electron–hole separation, and catalytic activity are keys to enhance the efficiency of solar energy utilization, which stimulates the development of high-performance photocatalysts. In recent years, two-dimensional (2D) materials have attracted much attention due to their extremely large specific surface area, shortened carrier migration path, and excellent optical properties, but it is still a challenge to realize overall water splitting under visible light with 2D material photocatalysts experimentally. Density functional theory-based first-principles calculations provide a quicker and lower cost approach in material design than experimental exploration. In this review, recent advances in design of 2D material photocatalysts, including metal-containing, metal-free, and heterojunction materials, for photocatalytic water splitting are presented from a theoretical perspective. Future opportunities and challenges in theoretical design of 2D material photocatalysts toward overall water splitting are also included.
Funder
National Natural Science Foundation of China
National Key Research and Development Program of China
Natural Science Foundation of Anhui Province
Anhui Initiative in Quantum Information Technologies
Subject
General Earth and Planetary Sciences,General Engineering,General Environmental Science
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献