Numerical analysis of structural change process in millimeter-wave discharge at subcritical intensity

Author:

Suzuki S.1ORCID,Hamasaki K.1ORCID,Takahashi M.1ORCID,Kato C.2ORCID,Ohnishi N.1ORCID

Affiliation:

1. Department of Aerospace Engineering, Tohoku University, Sendai 980-8579, Japan

2. Department of Science and Technology, Tokyo University of Science, Noda 278-8510, Japan

Abstract

Plasma-front propagation processes of 170 GHz millimeter-wave discharge were investigated under subcritical incident electric field intensity by using a one-dimensional model. The discharge structure was numerically reproduced at more than 0.2 MV/m by introducing the detailed chemical reaction and radiation transport processes into the conventional model. The results revealed that the propagation mechanism of the plasma front in the millimeter-wave discharge changes depending on the incident electric field intensity. At intensities greater than 1.4 MV/m, the plasma front propagated at supersonic speed, while forming a discrete structure, which has intervals of 1/4 wavelength of the millimeter wave. This structure was generated by electron-impact ionization and photoionization processes. At the intermediate intensities, the plasma front propagated continuously rather than discretely because the gas expansion increased the reduced electric field and induced electron-impact ionization. The dominant heating process at the plasma front was fast gas heating. At intensities less than 0.3 MV/m, the plasma front propagated continuously, but the dominant heating process changed to vibrational–translational relaxation. The discharge was maintained by thermal ionization and associative ionization. The simulation results were in good agreement with the past millimeter discharge experiments at this intensity.

Funder

Japan Society for the Promotion of Science

Japan Science and Technology Agency

Publisher

AIP Publishing

Subject

Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Numerical Analysis on Multi-Cycle Operation of Microwave Rocket with Reed Valve Air-Breathing System;JOURNAL OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3