Thermocapillary migration of a deformed droplet in the combined vertical temperature gradient and thermal radiation

Author:

Wu Zuo-BingORCID

Abstract

Thermocapillary migration of a deformed droplet in the combined vertical temperature gradient and thermal radiations with uniform and non-uniform fluxes is first analyzed. The creeping flow solutions show that the deformed droplet has a slender or a cardioid shape, which depends on the form of the radiation flux. The deviation from a sphere depends not only on the viscosity and the conductivity ratios of two-phase fluids but also on capillary and thermal radiation numbers. Moreover, in the roles of interfacial rheology on thermocapillary migration of a deformed droplet, only the surface dilatational viscosity and the surface internal energy can reduce the steady migration velocity, but the surface shear viscosity has not any effects on the steady migration velocity. The surface shear and dilatational viscosities affect the deformation of the droplet by increasing the viscosity ratio of two-phase fluids. The surface internal energy directly reduces the deformation of the droplet. However, the deformed droplet still keeps its original shape without the influence of interfacial rheology. Furthermore, it is found that, based on the net force balance condition of the droplet, the normal stress balance at the interface can be used to determine the steady migration velocity, which is not affected by the surface deformation in the creeping flow. From the expressions of the normal/the tangential stress balance, it can be proved that the surface shear viscosity does not affect the steady migration velocity. The results could not only provide a valuable understanding of thermocapillary migration of a deformed droplet with/without the interfacial rheology in a vertical temperature gradient controlled by thermal radiation but also inspire its potential practical applications in microgravity and microfluidic fields.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Reference44 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3