The low-cyclic fatigue response and its dependence of specific surface area for open-cell nanoporous Cu

Author:

Bi W. B.1ORCID,Wang Y. F.1ORCID,Zhang X. M.1ORCID,Deng L.1ORCID,Tang J. F.1,Zhao F.23ORCID,Wang L.14ORCID

Affiliation:

1. College of Science, Hunan Agriculture University 1 , Changsha 410128, People’s Republic of China

2. Institute for Advanced Study, Chengdu University 2 , Chengdu 610106, People’s Republic of China

3. Institute for Advanced Materials Deformation and Damage from Multi-Scale, Chengdu University 3 , Chengdu, Sichuan 610106, People’s Republic of China

4. The Peac Institute of Multiscale Sciences 4 , Chengdu, Sichuan 610207, People’s Republic of China

Abstract

We systematically study the low cycle fatigue behavior and its dependence of specific surface area (ζ) for nanoporous copper (NPC) under ultrahigh strain rate (γ˙≈109 s−1) cyclic shear loading by conducting large-scale molecular dynamic simulation and small-angle x-ray scattering analysis. With an increase in ζ, NPC undergoes a transition from the first excellent anti-fatigue property (ζ<1.24nm−1) to the subsequent easy-to-fatigue capacity (ζ≥1.24nm−1). Two different mechanisms are governing fatigue: (i) smooth nucleation and propagation of dislocations for the former and (ii) nanopore compaction/coalescence for the latter by prohibiting the activities of dislocations. For NPC with ζ=0.42nm−1, fatigue contributes to a surprising superelasticity, prompted by the entanglements and reversed disentanglements of longer dislocations. Surface reconstruction contributes to the fatigue tolerance of NPC by facilitating local surface roughening and the emission of dislocation slips, and it becomes more pronounced with decreasing ζ.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hunan Province

Funding of the Hunan Education Department Project

Double first-class construction project of Hunan Agricultural University

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3