The high dust density regime of dusty plasma: Theory and simulations

Author:

Avinash K.1ORCID,Kalita S. J.2ORCID,Ganesh R.2ORCID,Kaur P.2ORCID

Affiliation:

1. Department of Physics, Sikkim University 1 , Gangtok 737102, Sikkim, India

2. Institute for Plasma Research 2 , Bhat, Gandhinagar 382428, Gujarat, India

Abstract

It is shown that the dust density regimes in the dusty plasma are characterized by two complementary screening processes: (i) the low dust density regime where the Debye screening is the dominant process and (ii) the high dust density regime where the “Coulomb screening” is the dominant process. The Debye regime is characterized by a state where all dust particles carry an equal and constant charge. The high dust density regime or the “Coulomb plasma” regime is characterized by (a) “Coulomb screening” where the dust charge depends on the spatial location and is screened by other dust particles in the vicinity by charge reduction, (b) “asymptotic freedom” where dust particles, which on an average carry minimal electric charge, are asymptotically free in the high dust density limit, (c) uniform dust charge density and plasma potential, (d) dust charge neutralization by a uniform background of hot ions, and (e) dust is weakly coupled due to strong Coulomb screening. Thus, the dusty plasma is essentially a weakly coupled, one-component plasma with screening in the high dust density limit. Molecular dynamics (MD) simulations verify these properties. The MD simulations are performed, using a recently proposed Hamiltonian formalism to study the dynamics of Yukawa particles carrying variable electric charge. A hydrodynamic model for describing the collective properties of Coulomb plasma and its characteristic acoustic mode called the “Coulomb acoustic mode” arising due to imperfect Coulomb screening is given.

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3