In2S3 vacuum pressure sensor through a simple two-step process

Author:

Kumar Sumit1ORCID,John Teny Theresa1ORCID

Affiliation:

1. Department of Physics, BITS Pilani K K Birla Goa Campus, Zuarinagar 403726, Goa, India

Abstract

We demonstrate here an In2S3 based vacuum pressure sensor that can operate over a vacuum range, 103–10−3 mbar at room temperature. It is shown that vacuum pressure has a significant electrical impact on the sensitivity and the sensor response of the device. The sensor response of the device in terms of the rate of resistance change is 183 with a quick rise/fall time of 3.3/1.7 s. Even after being exposed to ambient conditions for 8 weeks, the device displays a consistent and periodic sensor response for 100 consecutive vacuum on/off cycles, demonstrating its durability. X-ray photoelectron spectroscopy was used to identify the surface adsorbed/chemisorbed groups, which are responsible for vacuum sensing properties. These surface effects were further confirmed by exposing the device to different environments such as humidity, high temperature, and high purity oxygen. Though In2S3 is known for its properties as a buffer layer in solar cells, this study reveals another potential application of In2S3 thin films as a vacuum pressure sensor.

Funder

Science and Engineering Research Board

Department of Science and Technology, Ministry of Science and Technology, India

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3