Isotope effects in supercooled H2O and D2O and a corresponding-states-like rescaling of the temperature and pressure

Author:

Kimmel Greg A.1ORCID

Affiliation:

1. Physical Sciences Division, Pacific Northwest National Laboratory , P.O. Box 999, Richland, Washington 99352, USA

Abstract

Water shows anomalous properties that are enhanced upon supercooling. The unusual behavior is observed in both H2O and D2O, however, with different temperature dependences for the two isotopes. It is often noted that comparing the properties of the isotopes at two different temperatures (i.e., a temperature shift) approximately accounts for many of the observations—with a temperature shift of 7.2 K in the temperature of maximum density being the most well-known example. However, the physical justification for such a shift is unclear. Motivated by recent work demonstrating a “corresponding-states-like” rescaling for water properties in three classical water models that all exhibit a liquid–liquid transition and critical point [Uralcan et al., J. Chem. Phys. 150, 064503 (2019)], the applicability of this approach for reconciling the differences in the temperature- and pressure-dependent thermodynamic properties of H2O and D2O is investigated here. Utilizing previously published data and equations-of-state for H2O and D2O, we show that the available data and models for these isotopes are consistent with such a low temperature correspondence. These observations provide support for the hypothesis that a liquid–liquid critical point, which is predicted to occur at low temperatures and high pressures, is the origin of many of water’s anomalies.

Funder

Basic Energy Sciences

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3