Exploring challenges and potential for a commercially viable piezoelectric energy harvesting system—Can Energy-as-Data concept thrive?

Author:

Bai Yang1ORCID

Affiliation:

1. Microelectronics Research Unit, Faculty of Information Technology and Electrical Engineering, University of Oulu , FI-90570 Oulu, Finland

Abstract

Over the past two decades, piezoelectric energy harvesting systems have undergone extensive research, spanning from materials to devices and electronics. Recently, there has been a notable introduction of the term “self-powered sensors,” which essentially refers to conventional, older passive sensors, associated with piezoelectric (or triboelectric) nanogenerators. Unfortunately, neither approach has yet yielded a successful market example. The primary challenge seems to lie in the intermittent nature of ambient kinetic energy input to these harvesters, despite the high output power density of piezoelectric energy harvesters. This article emphasizes the concept of Energy-as-Data, holding promise for a potentially brighter future for commercializable piezoelectric energy harvesting systems. The key advantage offered by this concept is the substantial extension of battery life through the optimization of data acquisition protocols. This involves transitioning from the traditional passive sensing mode with a high sampling rate to an extremely low duty cycle. This transition allows the harvested energy, accumulated in an energy storage unit over a specific interval, to be translated into critical information regarding kinetic environmental changes during that period. The article also discusses the broader context that necessitates the Energy-as-Data concept, establishing it as one of the few viable pathways to cultivate specialized markets for piezoelectric energy harvesting.

Publisher

AIP Publishing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3