Role of angular velocity on Marangoni convection shifting, heat accumulation, and microstructure evolution using laser directed energy deposition

Author:

Dai Donghua12ORCID,Li Yanze12,Gu Dongdong12ORCID,Zhao Wentai12,Long Yuhang12,Shi Xinyu12,Zhang Han12ORCID,Lin Kaijie12ORCID,Xi Lixia12

Affiliation:

1. College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics (NUAA) 1 , Yudao Street 29, Nanjing 210016, Jiangsu Province, People’s Republic of China

2. Jiangsu Provincial Research Center for Laser Additive Manufacturing of High-Performance Components 2 , Yudao Street 29, Nanjing 210016, China

Abstract

In this study, laser Directed Energy Deposition technology is employed to fabricate internal structures within the hollow interiors of rotating parts such as tubes and cylinders. A three-dimensional transient multiphysics model for C276 material was developed, which anticipated the impact of angular velocity from tube rotation on various aspects. This model, validated by experiments, focused on the melt pool morphology, Marangoni convection, oriented crystal microevolution, and deposited material microhardness. It was found that at 150 ms deposition, the dimensions of the melt pool stabilized. With an increase in the Peclet number, heat transfer within the melt pool transitioned from conduction to convection. A rise in angular velocity reduced the melt pool deposition height, limited by the volume of the deposited material. Additionally, this angular velocity generated tangential forces, leading to an asymmetric melt distribution in the longitudinal section of the melt pool and a movement of the melt toward the melting front. At the bottom of the melt pool, the growth of C276 columnar crystals was notably inclined toward the center of Marangoni convection. The microhardness of the deposited material showed a stable distribution along the inclined crystal direction, whereas significant fluctuations were observed perpendicular to the cylinder substrate. These findings highlighted the considerable effect of Marangoni convection on microstructural evolution.

Funder

National Natural Science Foundation of China

National Outstanding Youth Science Fund Project of National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Jiangsu Provincial Key Research and Development Program

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3