A highly stable and fully tunable open microcavity platform at cryogenic temperatures

Author:

Pallmann Maximilian1ORCID,Eichhorn Timon1ORCID,Benedikter Julia2,Casabone Bernardo3ORCID,Hümmer Thomas24,Hunger David15ORCID

Affiliation:

1. Physikalisches Institut, Karlsruhe Institute of Technology (KIT) 1 , Wolfgang-Gaede Str. 1, 76131 Karlsruhe, Germany

2. Faculty of Physics, Ludwig-Maximilians-University (LMU) 2 , Schellingstr. 4, 80799 Munich, Germany

3. ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology 3 , 08860 Castelldefels, Barcelona, Spain

4. Qlibri GmbH 4 , Maistr. 67, 80337 Munich, Germany

5. Institute for Quantum Materials and Technologies (IQMT), Karlsruhe Institute of Technology (KIT) 5 , Herrmann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany

Abstract

Open-access microcavities are a powerful tool to enhance light–matter interactions for solid-state quantum and nanosystems and are key to advance applications in quantum technologies. For this purpose, the cavities should simultaneously meet two conflicting requirements—full tunability to cope with spatial and spectral inhomogeneities of a material and highest stability under operation in a cryogenic environment to maintain resonance conditions. To tackle this challenge, we have developed a fully tunable, open-access, fiber-based Fabry–Pérot microcavity platform that can be operated under increased noise levels in a closed-cycle cryostat. It comprises custom-designed monolithic micro- and nanopositioning elements with up to mm-scale travel range that achieve a passive cavity length stability at low temperature of only 15 pm rms in a closed-cycle cryostat and 5 pm in a more quiet flow cryostat. This can be further improved by active stabilization, and even higher stability is obtained under direct mechanical contact between the cavity mirrors, yielding 0.8 pm rms during the quiet phase of the closed-cycle cryocooler. The platform provides the operation of cryogenic cavities with high finesse and small mode volume for strong enhancement of light–matter interactions, opening up novel possibilities for experiments with a great variety of quantum and nanomaterials.

Funder

Bundesministerium für Bildung und Forschung

Karlsruhe School of Optics and Photonics

Max Planck School of Photonics

European Union Quantum Flagship

Publisher

AIP Publishing

Subject

Computer Networks and Communications,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3