Effect of caffeine on the aggregation of amyloid-β–A 3D RISM study

Author:

Dey Priya1ORCID,Biswas Parbati1ORCID

Affiliation:

1. Department of Chemistry, University of Delhi , Delhi 110007, India

Abstract

Alzheimer’s disease is a detrimental neurological disorder caused by the formation of amyloid fibrils due to the aggregation of amyloid-β peptide. The primary therapeutic approaches for treating Alzheimer’s disease are targeted to prevent this amyloid fibril formation using potential inhibitor molecules. The discovery of such inhibitor molecules poses a formidable challenge to the design of anti-amyloid drugs. This study investigates the effect of caffeine on dimer formation of the full-length amyloid-β using a combined approach of all-atom, explicit water molecular dynamics simulations and the three-dimensional reference interaction site model theory. The change in the hydration free energy of amyloid-β dimer, with and without the inhibitor molecules, is calculated with respect to the monomeric amyloid-β, where the hydration free energy is decomposed into energetic and entropic components, respectively. Dimerization is accompanied by a positive change in the partial molar volume. Dimer formation is spontaneous, which implies a decrease in the hydration free energy. However, a reverse trend is observed for the dimer with inhibitor molecules. It is observed that the negatively charged residues primarily contribute for the formation of the amyloid-β dimer. A residue-wise decomposition reveals that hydration/dehydration of the side-chain atoms of the charged amino acid residues primarily contribute to dimerization.

Funder

Science and Engineering Research Board

Council of Scientific and Industrial Research, India

Institute of Eminence, D. U.

Publisher

AIP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3