Investigation of flow field characteristics and performance of carbon–hydrogen/oxygen-rich air rotating detonation engine

Author:

Rong GuangyaoORCID,Cheng MiaoORCID,Zhang Yunzhen,Sheng ZhaohuaORCID,Wang JianpingORCID

Abstract

Numerical simulations were conducted to investigate the flow field characteristics and performance of a carbon–hydrogen/oxygen-rich air rotating detonation engine (RDE). Three distinct flow field structures were observed in the gas–solid two-phase RDE. The results show that reducing the hydrogen equivalence ratio and particle diameter contribute to the transition from gas-phase single-front detonation to gas–solid two-phase double-front detonation and further to gas–solid two-phase single-front detonation. The effects of the solid fuel particle diameter and hydrogen equivalence ratio on the flow field characteristics and performance are revealed. The results show that reducing the particle diameter enhances the speed of the two-phase detonation wave, improves the pressure gain in the combustion chamber, and increases the specific impulse. Decreasing the hydrogen equivalence ratio reduces the detonation wave speed, enhances the stability of the detonation flow field, increases the pressure gain in the detonation wave and combustion chamber, and boosts the thrust. Furthermore, the selection of operational conditions to ensure stable operation and optimal performance of the RDE is discussed. In order to take into account the requirements of stability, pressure gain performance, and propulsion performance, two-phase single-front detonation should be realized in gas–solid two-phase RDE, and smaller hydrogen equivalent ratio and appropriate particle diameter should be selected. According to the conclusion of this study, the particle diameter should be 0.5–1 μm. Under such conditions, the detonation flow field demonstrates good stability, allowing the RDE to achieve higher pressure gain and specific impulse while maintaining stable operation.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Reference72 articles.

1. To the question of energy use of detonation combustion;J. Propul. Power,2006

2. Stationary spin detonation;Sov. J. Appl. Mech. Tech. Phys.,1960

3. Detonation combustion of a gas mixture in a cylindrical chamber;Combust., Explos. Shock Waves,1981

4. Continuous detonation combustion of an annular gas-mixture layer;Combust., Explos. Shock Waves,1996

5. Continuous detonation of a subsonic flow of a propellant;Combust., Explos. Shock Waves,2003

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3