Affiliation:
1. Sinopec Key Laboratory of Ultra-Deep Well Drilling Engineering Technology 1 , Beijing 100020, China
2. State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum (Beijing) 2 , Beijing 102249, China
3. College of Mechanical and Transportation Engineering, China University of Petroleum (Beijing) 3 , Beijing 102249, China
4. School of Petroleum Engineering, China University of Petroleum (East China) 4 , Qingdao 266580, China
Abstract
To enhance the efficiency of the Stinger Polycrystalline Diamond Compact (PDC) cutter in breaking hard rocks, this study focuses on optimizing the cutter intrusion-cutting rock breaking parameters. A numerical calculation model for the rotational breaking of granite by a Stinger PDC cutter was established. A comprehensive statistical examination was performed to assess the influence of various factors on intrusion ability (IA), tangential force (TF), and mechanical specific energy (MSE). The Taguchi method was used to determine the optimal settings for each factor, while analysis of variance was employed to assess the significance and relative impact of these factors on the target outcomes. In addition, the multi-objective function was optimized using the gray relational analysis method. The primary process parameters obtained for the various performance characteristics are the cone top angle (α), the cone top radius (r), the cutter diameter (d), the cutter back inclination angle (β), and weight on bit (P). The impact ratios of these parameters are 6.20%, 7.66%, 3.93%, 17.20%, and 65.02%, respectively. The optimal geometrical parameters are α = 60°, r = 2 mm, and d = 15 mm, while the optimal working parameters are β = 30° and P = 800 N. In the optimal case, IA and MSE were reduced by 55.335% and 15.809%, respectively, compared to the initial case. Despite a 15.706% increase in TF, the overall GRG increased for all three evaluation criteria, with an overall increase in efficiency of 18.229%. The results of this paper can provide guidance for the design of Stinger cutter PDC drill bits.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
China Postdoctoral Science Foundation funded project
Science Foundation of China University of Petroleum, Beijing
Open Fund of Sinopec Key Laboratory of Ultra-Deep Well Drilling Engineering Technology