Non-contact quartz-enhanced photoacoustic spectroscopy

Author:

Lin Haoyang1ORCID,Wang Chenglong1,Lin Leqing1,Wang Minshuai2ORCID,Zhu Wenguo1ORCID,Zhong Yongchun1,Yu Jianhui1,Tittel Frank3,Zheng Huadan1ORCID

Affiliation:

1. Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications and Department of Optoelectronic Engineering, Jinan University 1 , Guangzhou 510632, China

2. Department of Physics, School of Science, Jimei University 2 , Xiamen 361021, China

3. Department of Electrical and Computer Engineering, Rice University 3 , 6100 Main Street, Houston, Texas 77005, USA

Abstract

Non-contact quartz-enhanced photoacoustic spectroscopy (NC-QEPAS) was proposed and developed for trace gas analysis. The NC-QEPAS aims at solving the problem that the quartz tuning fork (QTF) must be immersed in the gases for photoacoustic wave transducing, which limits its application for corrosive and dusty gas sensing. In this work, the QTF was isolated from the gas, realizing “non-contact” detection. An elastic parylene film was synthesized and then patched to the slit of a QEPAS gas cell. With an optimized coupling effect, the parylene film shows a resonance enhancement with the QTF and acoustic micro-resonator, realizing non-contact photoacoustic detection of gas. The NC-QEPAS not only increases the photoacoustic signal amplitude but also decreases the background noise. Compared to traditional contact QEPAS with QTF immersed in the gas, the NC-QEPAS shows a signal-to-noise enhancement factor of 13. A normalized noise equivalent absorption coefficient of 8.8 × 10−9 cm−1 W Hz−1/2 was achieved. Allan deviation shows good long-term stability of the NC-QEPAS sensor. With an integration time of 1000 s, the developed QEPAS sensor shows a detection limit of 0.4 ppm. The detection limit can be further improved with longer integration time.

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3