Magnetospectroscopy of terahertz surface plasmons in subwavelength perforated superlattice thin-films

Author:

Karmakar Subhajit1ORCID,Kumar Deepak2,Varshney Ravendra Kumar1,Roy Chowdhury Dibakar2ORCID

Affiliation:

1. Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India

2. Department of Physics, Ecole Centrale School of Engineering—Mahindra University, Hyderabad, Telangana 500043, India

Abstract

Surface plasmons, the resonant oscillations of conducting electrons at the interface of negative and positive permittivity materials, pave the way for enhanced electromagnetic wave–matter interactions at a subwavelength scale. On the other hand, spin-dependent magnetotransport ushers an ingenious technology by inculcating electron spin to realize miniaturized, energy-efficient electromagnetic devices. Generally, magneto-resistive devices (viz., multilayer un-patterned magnetic–non-magnetic thin films) relying on magnetotransport mechanisms are not recognized for supporting surface plasmons toward enhanced electromagnetic interactions. However, an amalgamation of surface plasmons with spin-dependent magnetotransport can exploit magnetic (spintronic) degree of freedom in plasmonic devices. In this work, we propose a patterned superlattice (non-magnetic/ferromagnetic thin films) terahertz (THz) magneto-resistive device for supporting surface plasmons toward enhanced electromagnetic interactions. Magnetotransport dependent enhancement and dynamic magnetic modulation of resonant THz transmissions are experimentally demonstrated in subwavelength superlattice (Al/Ni) hole arrays for varying lattice parameters. Our experiments reveal that typical non-magnetic electromagnetic phenomena like surface plasmon resonances can be tweaked by externally applied low intensity magnetic fields [∼few tens of milli-tesla (0–30 mT)]. Experimental outcomes are explicated by spin-dependent terahertz magnetotransport theory in perforated superlattice metal sheets and, therefore, can stimulate a paragon for spin-based integrated photonic technology.

Funder

Science and Engineering Research Board

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3