Conductivity prediction model for ionic liquids using machine learning

Author:

Datta R.1ORCID,Ramprasad R.2ORCID,Venkatram S.2ORCID

Affiliation:

1. The Galloway School, Atlanta, Georgia 30327, USA

2. The School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA

Abstract

Ionic liquids (ILs) are salts, composed of asymmetric cations and anions, typically existing as liquids at ambient temperatures. They have found widespread applications in energy storage devices, dye-sensitized solar cells, and sensors because of their high ionic conductivity and inherent thermal stability. However, measuring the conductivity of ILs by physical methods is time-consuming and expensive, whereas the use of computational screening and testing methods can be rapid and effective. In this study, we used experimentally measured and published data to construct a deep neural network capable of making rapid and accurate predictions of the conductivity of ILs. The neural network is trained on 406 unique and chemically diverse ILs. This model is one of the most chemically diverse conductivity prediction models to date and improves on previous studies that are constrained by the availability of data, the environmental conditions, or the IL base. Feature engineering techniques were employed to identify key chemo-structural characteristics that correlate positively or negatively with the ionic conductivity. These features are capable of being used as guidelines to design and synthesize new highly conductive ILs. This work shows the potential for machine-learning models to accelerate the rate of identification and testing of tailored, high-conductivity ILs.

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3