Black box vs gray box: Comparing GAP and GPrep-DFTB for ruthenium and ruthenium oxide

Author:

Panosetti C.1ORCID,Lee Y.1ORCID,Samtsevych A.1ORCID,Scheurer C.1ORCID

Affiliation:

1. Fritz Haber Institute of the Max Planck Society , Berlin, Germany

Abstract

The increasing popularity of machine learning (ML) approaches in computational modeling, most prominently ML interatomic potentials, opened possibilities that were unthinkable only a few years ago—structure and dynamics for systems up to many thousands of atoms at an ab initio level of accuracy. Strictly referring to ML interatomic potentials, however, a number of modeling applications are out of reach, specifically those that require explicit electronic structure. Hybrid (“gray box”) models based on, e.g., approximate, semi-empirical ab initio electronic structure with the aid of some ML components offer a convenient synthesis that allows us to treat all aspects of a certain physical system on the same footing without targeting a separate ML model for each property. Here, we compare one of these [Density Functional Tight Binding with a Gaussian Process Regression repulsive potential (GPrep-DFTB)] with its fully “black box” counterpart, the Gaussian approximation potential, by evaluating performance in terms of accuracy, extrapolation power, and data efficiency for the metallic Ru and oxide RuO2 systems, given exactly the same training set. The accuracy with respect to the training set or similar chemical motifs turns out to be comparable. GPrep-DFTB is, however, slightly more data efficient. The robustness of GPRep-DFTB in terms of extrapolation power is much less clear-cut for the binary system than for the pristine system, most likely due to imperfections in the electronic parametrization.

Funder

Bundesministerium für Bildung und Forschung

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3