Estimation of a Minimum Allowable Structural Strength based on Uncertainty in Material Test Data

Author:

Fong Jeffrey T.1,Heckert N. Alan2ORCID,Filliben James J.2ORCID,Marcal Pedro V.3,Freiman Stephen W.4

Affiliation:

1. National Institute of Standards and Technology, Information Technology Laboratory, Applied and Computational Mathematics Division, Gaithersburg, MD 20899, USA

2. National Institute of Standards and Technology, Information Technology Laboratory, Statistical Engineering Division, Gaithersburg, MD 20899, USA

3. MPACT Corp., Oak Park, CA 91377, USA

4. Freiman Consulting, Potomac, MD 20854, USA

Abstract

Three types of uncertainties exist in the estimation of the minimum fracture strength of a full-scale component or structure size. The first, to be called the “model selection uncertainty,” is in selecting a statistical distribution that best fits the laboratory test data. The second, to be called the “laboratory-scale strength uncertainty,” is in estimating model parameters of a specific distribution from which the minimum failure strength of a material at a certain confidence level is estimated using the laboratory test data. To extrapolate the laboratory-scale strength prediction to that of a full-scale component, a third uncertainty exists that can be called the “full-scale strength uncertainty.” In this paper, we develop a three-step approach to estimating the minimum strength of a full-scale component using two metrics: One metric is based on six goodness-of-fit and parameter-estimation-method criteria, and the second metric is based on the uncertainty quantification of the so-called A-basis design allowable (99 % coverage at 95 % level of confidence) of the full-scale component. The three steps of our approach are: (1) Find the “best” model for the sample data from a list of five candidates, namely, normal, two-parameter Weibull, three-parameter Weibull, two-parameter lognormal, and three-parameter lognormal. (2) For each model, estimate (2a) the parameters of that model with uncertainty using the sample data, and (2b) the minimum strength at the laboratory scale at 95 % level of confidence. (3) Introduce the concept of “coverage” and estimate the full-scale allowable minimum strength of the component at 95 % level of confidence for two types of coverages commonly used in the aerospace industry, namely, 99 % (A-basis for critical parts) and 90 % (B-basis for less critical parts). This uncertainty-based approach is novel in all three steps: In step-1 we use a composite goodness-of-fit metric to rank and select the “best” distribution, in step-2 we introduce uncertainty quantification in estimating the parameters of each distribution, and in step-3 we introduce the concept of an uncertainty metric based on the estimates of the upper and lower tolerance limits of the so-called A-basis design allowable minimum strength. To illustrate the applicability of this uncertainty-based approach to a diverse group of data, we present results of our analysis for six sets of laboratory failure strength data from four engineering materials. A discussion of the significance and limitations of this approach and some concluding remarks are included.

Funder

Information Technology Laboratory

Publisher

National Institute of Standards and Technology (NIST)

Subject

General Engineering

Reference27 articles.

1. Practice for Reporting Uniaxial Strength Data and Estimating Weibull Distribution Parameters for Advanced Ceramics

2. Mann NR, Schafer RE, Singpurwalla ND (1974) Methods for Statistical Analysis of Reliability and Life Data (Wiley, New York).

3. Applied Life Data Analysis

4. Statistical Models and Methods for Lifetime Data

5. Anonymous (2002) Statistical Methods. MIL-HDBK-17 Composite Materials Handbook Volume 1: Guidelines for Characterization of Structural Materials (U.S. Department of Defense, Washington, DC), Chapter 8.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3