Impact Toughness Modification of NIST Low-Energy Charpy Verification Specimens for Testing at Room Temperature

Author:

Lucon Enrico,Santoyo Ray L

Abstract

The possibility for the National Institute for Standards and Technology (NIST) to certify Charpy reference specimens for testing at room temperature (21 °C ± 1 °C) instead of −40 °C was investigated in a previous study, in which a slightly increased likelihood of specimen jamming was observed at the low-energy level (13 J to 20 J). Moreover, there is a concern that the higher impact toughness of low-energy verification specimens at room temperature would not allow the same Charpy machine features to be verified as in the case of low-temperature (−40 °C) tests, namely, the linear elastic behavior of the sample and the very high maximum forces (typically larger than 33 kN). In this paper, we report on the change in the mechanical properties (hardness and absorbed energy) of the American Iron and Steel Institute (AISI) 4340 steel low-energy specimens that ensues from the modification of the temperature of the final tempering heat treatment. We established that, if low-energy verification specimens are tempered at 300 °C for 2 h and then air cooled, they exhibit equivalent impact toughness (13 J to 20 J) and postimpact behavior (specimen halves projected backward at high speed) at room temperature as compared to specimens currently on sale for testing at −40 °C. Their hardness is however increased to above 49 HRC on the Rockwell scale. The minimum hardness requirement for low-energy verification specimens, currently set at 44 HRC in NIST specifications, will have to be increased to 49 HRC.

Funder

Material Measurement Laboratory

Publisher

National Institute of Standards and Technology (NIST)

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3