P-velocity of the upper mantle

Author:

Gordienko V.V.,Gordienko L.Ya.

Abstract

The authors have constructed models featuring seismic P-wave velocity distribution in the upper mantle beneath oceanic, continental and transition regions, such as mid-ocean ridges, basins, trenches, island arcs, and back-arc troughs, Atlantic transitional zones, flanking plateaus of mid-ocean ridges, platforms, geosynclines, rifts, recent activation zones. The models are in agreement with the deep-seated processes in the tectonosphere as predicted in terms of the advection-polymorphism hypothesis. The models for areas of island arcs and coastal ridges are similar to those for alpine geosynclines disturbed by recent activation. The models for areas of mid-ocean ridges and back-arc troughs are identical. They fit the pattern of recent heat-and-mass transfer in the case of rifting, which, given the basic crust with continental thickness, leads to oceanization. The model for the basin reflects the effect of thermal anomalies smoothing beneath mid-ocean ridges or back-arc troughs about 60 million years later. The model for the trench and flanking plateau reflects the result of lateral heating of the mantle’s upper layers beneath the quiescent block from the direction of the island arc and basin (trench) and mid-ocean ridge and basin (flanking plateau). A detailed bibliography on regions covered by studies was presented in the authors’ earlier publications over past eight years. There are quite significant differences between models for regions of the same type that are described in publications of other authors. This is largely due to the fact that individual authors adopt a priori concepts on the velocity structure of the upper mantle. High variability of seismic P-wave velocities within the subsurface depth interval has been detected as a result of all sufficiently detailed studies. This variability is responsible for the sharp increase in the scatter of arrival times of waves from earthquakes at small angular distances. The corresponding segments of travel-time graphs were simply ignored, and the graphs started from about 3° after which the scatter of arrival time acquired a stable character. Accordingly, velocity profiles were constructed, as a rule, starting from depths of about 50 km. The constructed velocity profiles vary little from region to region with the same type of endogenous regimes. This enables us to maintain that the models represent standard (typical) VP distributions in the mantle beneath the regions, just as presumed in terms of the theory.

Publisher

Institute of Geophysics of the National Academy of Sciences of Ukraine by S.I. Subbotin name

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3