Microbial Air Samplers for Meaningful Cleanroom Environmental Monitoring

Author:

Eaton Tim

Abstract

Airborne microbiological concentrations within pharmaceutical cleanrooms are determined by sampling and to maximise the detection of any airborne microbes, it is essential that the sampling is undertaken in locations where there is greatest contamination risk using air samplers that have a verified and appropriate performance. Sampler performance can be assessed by review of both the physical and biological collection efficiencies that are determined by testing. The physical collection efficiency is the ability to collect particles of various sizes and the biological collection efficiency assesses the collection of viable microbes that includes the losses caused by the physical collection efficiency and the detrimental effect that the sampling has on the viability of the captured microbes. Due to the limitations of the established biological collection efficiency test method, this efficiency is only determined for microbes of sub-micron size which are not representative of the larger microbe-carrying particles typically present with cleanrooms. Samplers with a low physical collection efficiency for sub-micron particles are likely to have a poor performance when this test method is utilised and in an attempt to remove this bias from the testing the ‘biological efficiency’, is often reported. This is a measure of the likelihood that any captured microbes would survive, but is often mistaken for the biological collection efficiency and samplers may be utilised in the false belief that they have an appropriate performance. This article provides information regarding air sampler performance testing and reviews the test results reported by the same independent specialist testing company, therefore negating issues resulting from different testing methods, for three different air samplers. The results that are used to determine the ‘biological efficiency’ are examined to provide information relating to the biological collection efficiency of each sampler and to also provide additional information relating to the physical collection efficiency. Improvements to enhance the air sampler testing procedures, to enable a better direct comparison of the performance of different samplers, are suggested.

Publisher

Pharmaceutical and Healthcare Sciences Society (PHSS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3