Characterization of the effects of Mg2+ on Ca2+- and Sr2+-activated tension generation of skinned rat cardiac fibers.

Author:

Donaldson S K,Best P M,Kerrick G L

Abstract

Submaximum and maximum forces of the cardiac muscle contractile apparatus, activated by Ca2+ or Sr2+, were determined as a function of Mg2+ concentration. Apical left ventricular tissue from Sprague-Dawley rats was broken by homogenization into small bundles of fibers with disrupted sarcolemmas (skinned). Tension generation was activated by and graded according to the concentration of Ca2+ or Sr2+ in solutions bathing the skinned fibers and measured with a photodiode force transducer. Steady-state tensions for various levels of activation at each of four concentrations of Mg2+ (5 x 10(-5), 1 x 10(-3), 5 x 10(-3), and 10 x 10(-3) M) in the bathing solutions were analyzed. Other bathing solution constituents and parameters mimicked significant normal intracellular conditions while providing adequate buffering of [H+], [Ca2+], and [MgATP2-] (magnesium adenosine triphosphate). To assess changes in sensitivity of the mechanical system to activation by Ca2+ (or Sr2+), each submaximum tension was expressed as a percentage of the given fiber bundle's maximum force generated at saturating [Ca2+] (or [Sr2+]) at the same [Mg2+]. When plotted as saturation curves these data demonstrate that increasing [Mg2+] depresses Ca2+ sensitivity of the force-generating mechanism. The Ca2+ and Sr2+ sensitivity of the cardiac force-generating apparatus is similar at every [Mg2+], indicating that the magnitude of Mg2+ effect is similar for both types of activation. However, absolute maximum tensions at saturating activating cation concentration increased as [Mg2+] increased; the effect of Mg2+ on maximum force was proportionately the same for Ca2+ and Sr2+ activation. But because saturating [Ca2+] always resulted in a lower maximum force than saturating [Sr2+], this site of Ca2+-Mg2+ interaction appears distinct from the one influencing Ca2+ sensitivity.

Publisher

Rockefeller University Press

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3