THE ROLE OF HIGH IONIC CONCENTRATIONS IN PROTECTION AGAINST X-IRRADIATION

Author:

Bachofer C. S.1,Pottinger M. Aelred1

Affiliation:

1. From the Department of Biology, University of Notre Dame, Notre Dame

Abstract

Various levels of protection against x-irradiation damage in bacteriophage T1 may be obtained by the addition of inorganic salts to the aqueous virus suspensions during irradiation. The highest survival values are obtained with the nitrite salts, and their protective power is attributed primarily to their function as reducing agents. The nitrate ion shows greater protection than the corresponding sulfate or chloride ions. This may be due in part to the lower energy level of the nitrate ion, by reason of resonance. Since greater expenditure of incident energy is required to raise the ion from the ground state, the energy thus dissipated may be ineffective in the inactivation of virus particles. The ammonium salts exhibit protection of a different order of magnitude from that of the metallic salts. It is postulated that NH4+ protects in a threefold way: (a) dehydration, (b) reduction, in which the ammonia is oxidized to nitrite and the nitrite to nitrate, and (c) stabilization of the virus protein. Metallic salts likewise protect, but a point of maximum protection is reached in lower concentrations than in the case of the ammonium salts. After this maximum protection is reached, there is a rapid decline in survival with increased concentration. This prevents protection of the order of magnitude that can be obtained with the ammonium salts. It is postulated that a specific cationic interaction with the phage may be responsible for the decreased protection. Bacteriophage is protected during x-irradiation by an alkaline pH, in the case of NH4OH. This protection could not be produced with NaOH, presumably because of the greater hydrolysis of the protein components of the virus particle in solutions of NaOH, whereas NH4OH stabilizes the protein.

Publisher

Rockefeller University Press

Subject

Physiology

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Direct and Indirect Action of Radiation;Molecular Radiation Biology;1970

2. Direkte und indirekte Strahlenwirkung;Heidelberger Taschenbücher;1969

3. Effet du pH sur la radioprotection des grains d'orge par les sels minéraux;Experientia;1966-02

4. Action Radioprotectrice de Chlorures Alcalino-terreux (BeCl2, SrCl2et BaCl2) Sur La Croissance de L'orge;International Journal of Radiation Biology and Related Studies in Physics, Chemistry and Medicine;1963-01

5. Effect of Radiation on Macromolecules;Fundamentals of Radiobiology;1961

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3